AP Chemistry Chapter 22 - Organic and Biological Molecules

- 22.1 Alkanes: Saturated Hydrocarbons
 - A. Straight-chain Hydrocarbons
 - 1. Straight-chain alkanes have the formula $C_n H_{2n+2}$
 - 2. Carbons are sp^3 hybridized

The First 10 Alkanes		
# of Carbons	Name	Formula (C_nH_{2n+2})
1	Methane	CH ₄
2	Ethane	C ₂ H ₆
3	Propane	C ₃ H ₈
4	Butane	C ₄ H ₁₀
5	Pentane	C ₅ H ₁₂
6	Hexane	C ₆ H ₁₄
7	Heptane	C ₇ H ₁₆
8	Octane	C ₈ H ₁₈
9	Nonane	C ₉ H ₂₀
10	Decane	C ₁₀ H ₂₂

B. Structural Isomers

- 1. Same formula, but the atoms are bonded together in a different order
- 2. Different bonding order results in different properties

- C. Rules for Naming Alkanes (Nomenclature)
 - 1. For a branched hydrocarbon, the longest continuous chain of carbon atoms gives the root name for the hydrocarbon
 - 2. When alkane groups appear as substituents, they are named by dropping the *-ane* and adding *-yl*.
 - 3. The positions of substituent groups are specified by numbering the longest chain of carbon atoms sequentially, starting at the end closest to the branching.
 - 4. The location and name of each substituent are followed by the root alkane name. The substituents are listed in alphabetical order (irrespective of any prefix), and the prefixes *di-, tri-*, etc. are used to indicate multiple identical substituents.

- D. Reactions of Alkanes
 - 1. Combustion reactions

a.
$$2C_2H_6(g) + 7O_2(g) \rightarrow 4CO_2(g) + 6H_2O(g)$$

2. Substitution reactions

a. $CH_4 + Cl_2 \xrightarrow{hv} CH_3Cl + HCl$ methane chloromethane

3. Dehydrogenation reactions

a.
$$CH_3CH_3 \xrightarrow{Cr_2O_3 \ at \ 500^\circ C} CH_2 = CH_2 + H_2$$

ethane ethylene

- E. Cyclic Alkanes (Cycloalkanes)
 - 1. Alkanes in which the carbon atoms are arranged in a ring, or cyclic, structures

- a. The 90° angle in cyclobutane is not nearly tetrahedral, therefore the molecule is quite unstable
- 2. Nomenclature
 - a. Rings are numbered to give the smallest substituent numbers possible
 - b. Largest substituents are given the lowest possible numbers

22.2 Alkenes and Alkynes

- A. Alkenes
 - 1. Hydrocarbons that contain double bonds
 - a. The simplest alkene is ethene, or ethylene (C_2H_4)
 - b. Alkenes are nonpolar molecules

B. Geometric Isomers

1. Isomers in which the order of atom bonding is the same but the arrangement of atoms in space is different

 A molecule can have a geometric isomer only if two carbon atoms in a rigid structure each have two different groups attached

- 3. In some isomer pairs, one isomer is biologically active, while the other is not (specificity of enzymes is the cause)
- C. Alkynes
 - 1. Hydrocarbons with triple covalent bonds
 - a. The simplest alkyne is ethyne, or acetylene (C₂H₂)

b. Alkynes are nonpolar molecules

Propene

D. Reactions of Alkenes and Alkynes

1. Addition reactions

a. Hydrogenation

$$CH_2 = CHCH_3 + H_2 \xrightarrow{Catalyst} CH_3CH_2CH_3$$

Propane

b. Halogenation

$$CH_2 = CHCH_2CH_2CH_3 + Br_2 \rightarrow CH_2BrCHBrCH_2CH_2CH_3$$

1-Pentene 1-2-dibromopentene

c. Polymerization

- (1) small molecules are joined together to form a large molecule
- 22.3 Aromatic Hydrocarbons
 - A. Structure of Aromatics
 - 1. Hydrocarbons with six-membered carbon rings and delocalized electrons
 - a. The simplest aromatic hydrocarbon is benzene (C₆H₆)

Benzene

- b. Aromatic hydrocarbons are nonpolar molecules
- B. Geometric Isomerism
 - 1. ortho (o-) = two adjacent substituents
 - 2. meta (m-) = one carbon between substituents
 - 3. para (p-) = two carbons between substituents

o-dichlorobenzene

m-dichlorobenzene

p-dichlorobenzene

- C. Reactions of Aromatic Hydrocarbons 1. Substitution reactions

22.4 Hydrocarbon Derivatives

Classes of Organic Compounds			
Class	Functional Group	General Formula	
Alcohol	OH	R — ОН	
	nyaroxyi group (-OH)		
	— X	R — X	
Ether	— o —	R R'	
Aldehyde	о Сн	о R — С — Н	
	carbonyl group		
Ketone		0 R R'	
	carbonyl group		
Carboxylic acid	о он	о R — С — ОН	
E a la c	carboxyl group		
Ester		0 R C	
Amine	──N ── amine group	R—N—R'' R'	

Examples:

