KEY

CELL NOTATION

anode reaction $Co(s) \rightarrow Co^{2+}(aq) + 2e^{-}$ cathode reaction $Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$ $Co(s) + Cu^{2+}(aq) \rightarrow Co^{2+}(aq) + Cu(s)$ overall reaction

The "cell notation" for this electrochemical cell is $Co(s) | Co^{2+} | Cu^{2+} | Cu(s)$ Use the above information to answer the following questions:

The left portion of the cell notation represents the 1. (anode) cathode).

The "||" represents the __ 2. (anode / cathode / salt bridge)

Write the cell notation for $Cl_2(g) + Zn(s) \rightarrow 2 Cl^- + Zn^{2+}$ 3.

Write the cell notation for $2Ag(s) + Pt^{2+} \rightarrow Pt(s) + 2Ag^{+}$

- STATION 2 E° VALUES

 1. A cell is made from Sn in 1.0 \underline{M} Sn(NO₃)₂ and Al in 1.0 \underline{M} Al(NO₃)₃. The E° of the cell is $\frac{+1.52}{4.52}$ volts. Al $\frac{50.24}{4.54}$ $\frac{-1.46}{4.66}$
- 2. A cell is made from Sn in 1.0 \underline{M} Sn(NO₃)₂ and Cd in 1.0 \underline{M} Cd(NO₃)₂. The E° of the cell is $\frac{+.26}{-.44-(-.40)}$ volts.
- 3. A cell is made from Ag in 1.0 \underline{M} AgNO₃ and Cu in 1.0 \underline{M} Cu(NO₃)₂. The E° of the cell is $\frac{4.46}{100}$ volts.
- 4. A cell is made from Zn in 1.0 \underline{M} Zn(NO₃)₂ and Ag in 1.0 \underline{M} AgNO₃. The E° of the cell is $\frac{1.56}{1.80}$ volts. $\frac{2n^{24}}{1.80}$ volts. $\frac{2n^{24}}{1.80}$

STATION 3 - GALVANIC CELLS

- 1. $Fe(s) + X^{2+}(aq) \rightarrow Fe^{2+}(aq) + X(s)$ $E^{\circ} = +0.78 \text{ V}$
 - a) Write the equation for the standard reduction of X.

b) What is the E° of X?

$$.78 = X + (+.44)$$

- 2. A cell is made from Sn in 1.0 M Sn(NO₃)₂ and Al in 1.0 M Al(NO₃)₃ at 25°C. Al -1.66 -.14 (-1.66)=
 - a) The E° of the cell is 1.52 volts.
 - b) The reaction at the anode is: $A1 \rightarrow A1^{34} 2e^{-}$
 - c) The reaction at the cathode is: $\frac{Sn^2 + 12e}{}$
 - d) The overall reaction is: $\frac{241}{35n^{2+}} = \frac{35n + 241}{34}$
 - e) If the cell were made with $[Sn^{2+}] = 0.10 \text{ M}$ and $[Al^{3+}] = 3.0 \text{ M}$, would the voltage increase, decrease, or remain the same?

nain the same?
$$\mathcal{E} = 1.52 - \frac{(8.31)(298)}{(6m)(96500)} \ln \frac{(3.0)^3}{(.1)^3} \frac{3.0}{3.0}$$
$$= 1.49$$

STATION 4 - BALANCING REDOX EQ'S(ACIDIC)

Balance the following equations in acidic solution:

STATION 5 - BALANCING REDOX EQ'S (BASIC)

Balance the following equations in basic solution: $(2H^{\frac{1}{2}}U^{-\frac{1}{2}} + 5^{-\frac{1}{2}} \longrightarrow C^{\frac{1}{2}}U^{-\frac{$

STATION 7 - REACTIVITY

Consider the following half-reactions and E° values:

$$Ag^{+}(aq) + e^{-} \rightarrow Ag(s)$$
 $E^{\circ} = 0.80 \text{ V}$
 $Cu^{+2}(aq) + 2e^{-} \rightarrow Cu(s)$ $E^{\circ} = 0.34 \text{ V}$
 $Pb^{+2}(aq) + 2e^{-} \rightarrow Pb(s)$ $E^{\circ} = -0.13 \text{ V}$

- 1. Which of these metals or ions is the strongest oxidizing agent?
- 2. Which is the strongest **reducing agent**?

Predict whether each of the following reactions will occur as written:

3.
$$Cu^{2+} + Pb^{\circ} \rightarrow Pb^{2+} + Cu^{\circ}$$

4.
$$Pb^{2+} + 2Ag^{\circ} \rightarrow 2Ag^{+} + Pb^{\circ}$$

4.
$$Pb^{2+} + 2Ag^{\circ} \rightarrow 2Ag^{+} + Pb^{\circ}$$
5. $2Ag^{+} + Pb^{2+} \rightarrow 2Ag^{\circ} + Pb^{\circ}$

N

By Mrd

Pb - 3 Pb 2+ +2e- Ag++e- - Ag

Pb+21g+ -> 21g+ Pb2+

STATION 8 - SKETCH A CELL

Consider these half-reactions & E° values:

Ag⁺(aq) + e⁻
$$\rightarrow$$
 Ag(s) E° = 0.80 V
Cu⁺²(aq) + 2e⁻ \rightarrow Cu(s) E° = 0.34 V

Pb⁺²(aq) + 2e⁻
$$\rightarrow$$
 Pb(s) E° = -0.13 V -

Which two metals and 1.0 M solutions would give the greatest voltage? As Pb

Label:

- the anode reaction $Pb \rightarrow Pb \rightarrow +7c$
- the cathode reaction $Ag^{+} + Ic \rightarrow Ag$ the overall reaction $Pb + 2Ag^{+} \rightarrow Pb^{2+} + 2Ag$
- the metals used for each electrode
- the ions in solution
- the expected voltage .80 (-.13) = .93
- the direction of flow of electrons
- the flow of ions in the salt bridge
- the charge on each electrode (+ or –)
- ions you might use in the salt bridge K+ NO
- the observed changes in the electrodes