Name:

Honors Chemistry Worksheet: Calculations Involving a Limiting Reactant
\checkmark If an equation is not given write a balanced equation.
\checkmark Identify the limiting reactant in each problem.

1. For the reaction of $2 \mathrm{Na}_{(\mathrm{s})}+\mathrm{Cl}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NaCl}_{(\mathrm{s})}, 12.0$ grams of sodium reacts with 5.00 grams of chlorine. What mass of sodium chloride could be produced?

$$
\begin{aligned}
& 12.0 \mathrm{~g} \mathrm{Na} / \frac{1 \mathrm{miNa}}{12 \mathrm{NaCl}} / \frac{2 \mathrm{NaCl}}{228.45 \mathrm{gNaCl}}=30.5 \mathrm{~g} \mathrm{NaCl}
\end{aligned}
$$

2. In the combustion of ethane, $\mathrm{C}_{2} \mathrm{H}_{6}$, all reactants and products are gases at STP. Determine the volume of CO_{2} solution to this problem? Remember what coefficients represent!)
$2 \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{HO}_{2} \longrightarrow 4 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$

* Because volume to volume so $\div 28.4$ then $\times 22.4$ can just do mole ratio

3. What mass of sodium sulfate is produced when 12.37 grams of sodium hydroxide is reacted with a 200.0 ml of a solution that is 5.0% sulfuric acid by mass? $2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
4. Given: $2 \mathrm{AgNO}_{3(\mathrm{aq})}+\mathrm{NiCl}_{2(\mathrm{aq})} \rightarrow 2 \mathrm{AgCl}_{(\mathrm{s})}+\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq})}$. Answer the following:
a.) What mass of silver chloride is produced when 0.847 grams of silver nitrate is reacted with 0.650
grams of nickel(II) chloride?
b.) If 0.683 grams of silver chloride is actually produced what is the percent yield.

$$
.683 / 715=95.5 \%
$$

c.) What mass of excess reactant remains?
5. Given: $\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{NaCl}_{(\mathrm{aq})}+\mathrm{NH}_{3(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow \mathrm{NaHCO}_{3(\mathrm{aq})}+\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{aq})}$. Determine the amount of grams of sodium bicarbonate that could be produced when 1.50 liter of carbon dioxide gas at STP is reacted with 6.11 grams $\mathrm{NaCl}, 2.70$ grams of ammonia and 250.0 grams of water.

6. Given: $\mathrm{Znn}_{(\mathrm{s})} \mathrm{NaOH}_{(\mathrm{aq})} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow \mathrm{Na}_{2} \mathrm{Zn}(\mathrm{OH})_{4(\mathrm{aq})}+\mathrm{H}_{2(\mathrm{~g})}$. What volume of hydrogen gas at STP is produced when 3.17 grams of Zn is combined with 5.00 grams of NaOH with excess water.

$$
\begin{array}{c|l|l|l|}
5.00 \mathrm{~g} \mathrm{NaOH} & 1 \mathrm{mul} / \mathrm{NaOH} & 1 \mathrm{H}_{2} & 22.4 \mathrm{CH} \\
\hline 58 \mathrm{gNaOH} & 2 \mathrm{NaOH} & 1 \mathrm{molHt}
\end{array}=\begin{aligned}
& 966 \mathrm{LH} \\
& \hline
\end{aligned}
$$

a.) What mass of iodine is produced when 6.76 grams of copper(II) sulfate is reacted with 9.82 grams of

$$
6.76 \mathrm{~g} \mathrm{CuSO}_{4} / \mathrm{I} / \mathrm{Iml}^{\text {potassium iodide? }} \mathrm{Cu} \mathrm{O}_{4} \mid \mathrm{I}
$$

$$
3.31 / 3,75 \times 100=88.370
$$

c.) What mass of excess reactant remains?

$$
\begin{aligned}
& 6.72 g-4.72=2 \text { gladly excess }
\end{aligned}
$$

8. What mass of lead(II) iodide is formed from the reaction of 0.357 grams of lead(II) acetate and 0.104 grams of potassium iodide? $\mathrm{Pb}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}+2 \mathrm{KI} \longrightarrow \mathrm{PbI}_{2}+2 \mathrm{~K} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$

9. A 15.52 gram sample of brass (an alloy of copper and zinc o that is $77.0 \% \mathrm{Cu}$ by mass is reacted with 720 ml of a solution of sulfuric acid that is $14.0 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ by mass. What mass of CuSO_{4} would be produced?

Reaction is: $\mathrm{Cu}_{(s)}+\mathrm{H}_{2} \mathrm{SO}_{4} \mathrm{SO}_{4(\mathrm{aq})} \rightarrow \mathrm{CuSO}_{4(\text { aq u }}+\mathrm{SO}_{2(\mathrm{~s})}+\mathrm{OH}_{2} \mathrm{O}_{(\text {l }}$

