Review Chapter 14/15: Acids/Bases Worksheet

A 1. Whos	e definition of ac	ids and bases	emphasizes the r	ole of the pro	oton?	
	a. Brønsted-Lov	vry b. Lev	wisc. Arrhenius	d. Faraday		
2. A con	b. is formed bc. is formed b	er a base has a y the addition y the addition	given up a proton of a proton to an of a proton to a l given up a proto	acid. base.		; .
<u></u>	is the pH of a ne	utral solution	at 25°C?			
	a. 0	b. 1	c. 7	d. 14		
4. A solu	ition whose pH is a. is always neu c. is always acid	tral	b. is always ba d. might be ne		or acidic	
	D ⁺] = 1.70 x 10 ⁻³ , v a. 1.81	what is the pH b. 2.13	c. 2.42	d. 2.77		
a. HCN acid:	n of the following + H₂O ⇔ H₃O⁺ + 	CN	ersible reactions: base: <u>ル。O</u> conjugate base		<u></u>	
acid	+ HSO ₄ ⇔ SO ₄ -2 : <u>HSO</u> , ugate acid:		base: <u>H.O</u> onjugate base:	<u>, s</u>	04 r	
a. 0:00 b. 3 x 1 c. [H ₃ (d. 0.01	of the following: 1 M HCl2 0^3 M HCl2 0^4] = 2 x 10^4 M HCl2] = 7.53 x 10^{-5}	5 3.7	- -	* * * *		* \$
a. [OH [*] b. pH =	he pOH of the fol] = 9.2 x 10 ⁻⁶ 5 1.39 12.61 †] = 4.1 x 10 ⁻⁴	.0		·		
9. Determine the a. pH =	he amount of [H ₃ 3.0 <u>1.0 メに</u>	0^{+} from the f	following pH valu	es:	· · · · · · · · · · · · · · · · · · ·	,

11. Determine the p solution.	H and pOH of each of the following	g and label each as an acid, base, or neutral
	х 10 ⁻⁸ pH: <u>- /8</u> pOH: <u></u>	Label: loose
h [OH] =	1 x 10 ⁻³ pH: 1 pOH: 1	Label: Vose
	.3 x 10 ⁻¹ pH: <u>., i, н</u> pOH: <u></u>	
d [H ⁺] = 1		Label: neutral
u. [11]-1	x 10 pm pom	T Label. TREATOR
12. Determine the [OH] from each of the following:	
a. pOH = 3.4	x 10° 3.0 x 10° 3.59 x 10°	
b. [H ⁺] = 2.9	×10° 3.0 ×10-4 3.59×10)—4
13. Summarize the t	three main acid-base theories in th	e table below.
	Acid	Base
Arrhenius	releases H+ or H ₃ 0+ in 1+20	releases Olt-in H20
Brønsted-Lowry	donates proton (H1)	accepts proton (H+)
	accept electron pr	donate electron pr
	ate base for each of the following E	Brønsted-Lowry acids.
	ate acid for each of the following B	rønsted-Lowry bases.
16. The pH of an aci	dic solution is lower	_ than 7.
17. The pH of a basic	c solution is <u>htaker</u> tha	n 7.
18. Acids will taste _	<u> saw</u> and turn litmus p	aper <u>red</u> .
19. Bases will feel _5	and turn litmus pap	per blue.
20.What is the gene	ral formula for a neutralization rea	action?
=	BASE - SALT	
21. List 3 strong acid	Is and explain why these acids are	considered strong acids.

they completely dissociate in accaction

22. List 3 weak acids and explain why these acids are considered weak acids.

HF, HBC, HCHOOH

threy do not completely dissociate in a reaction

23. List 2 strong base's and explain why these bases are considered strong bases.

NaOH, KOH

they completely dissociate in a reaction

NHz it do	ies not completely disso	ciati in a reacti	ien	
Write the correct che and bases.	mical formula or chemical n	ame for each of th	ne following acids	•
	droxide ALOH)			
b. sulfurous aci				
	oxide Ca (OH)			
d. hydrobromic	acid HBC			
e. HCH₃COO <u>o</u>				
f. H ₂ CO ₃ casb				
g. KOH <u>potos</u>	sium hudroxide			
h. HCI <u>hughri</u>	ichiaric ucia			
i. What do the	acid formulas have in comm	ion? they sta	H Ation to	
j. Which of the	above bases would be consi	idered Arrhenius I	pases?	
Ca (OH)2	S AI (OH) 3 KOH	has OH-	· · · · · · · · · · · · · · · · · · ·	
26. Define an amphoterio	substance. Give an example	a		
com be an	a bid or abase de	perdina on the	e-continui unla	
27. What is the molarity	of a solution that has 4.0 g o	f sodium hvdroxid	le in 120 mL of	
solution? What is the	pH of this solution? Sunce	2 10H in INC	20H MH) = .833M	
VaOH/ =. Imu/NaOH	= . 833 M NaOH	DOH = . 0.79	/pH = 13.92/	
409 . (2) () [•		
acid in vinegar contain	enius theory of acids, what on the in their aqueous solutions?	do citric acid in or	anges and acetic	
H	in their addeods solutions:			
/ 4				
29. Use an (A) to indicate	an acid only, (B) to indicate	a base only, and ((C) to indicate	
both.				
A Turns litmus pape	r red C. Is a goo	d conductor		
A Has a pH of 3		d when sodium re	acts with water	
$\underline{\underline{\mathbf{A}}}$ Tastes sour	A leacts w	rith zinc to produc	e hydrogen gas	
<u></u> Feels slippery	$\dot{\mathcal{B}}$ Turns pir	nk with phenolpht	:halein	
<u></u> B Tastes bitter		ith carbonates to		
30. A standardized solution	on of 0.65 M HCl is titrated v	vith a saturated so	olution of calcium	
hydroxide to determin	ne its molarity. It takes 25.0	mL of acid to neut	tralize 10.0 mt of	
th <u>e bas</u> e. Write the ba	lanced equation for this net	utralization reaction	on and determine	
the molarity of the Ca 2 HCI + (aloH) ₂ -	(OH) ₂ solution.			
1/101 + (alon/2 -	-> 2H20 + (ac/2	1(01) 160/04)	AA5330 = 14 (a)	1 2 10 C m 1 /02/
. 0.65 M HU	$= \frac{x}{0.025L} = .01625 \text{ mol}$	2 HCT / Teaching	= .008125 mol calon,	= -1.8125 M (alun,
31. By titration, 17.6 ml o	f aqueous H ₂ SO, neutralized	127 Aml of 0 165N	1010L	
molarity of the aqueous a	f aqueous H ₂ SO ₄ neutralized cid solution	·	7 1 10H + Ha CO	as the
$165 \text{ M. LibH} = \frac{x}{0274}$	Mouseline	114_5/1	7 21011 1 11/200	4 . 1.70 . 2.200
165 M. LIUFI - NOTH -	. 00/04/111012 2101	117,004 = , (1022605 mol H2804	[12844 CA.
,U# 11	**	12010A -	01761	-=1.170 W LUSOA

24. List 1 weak base and explain why it is considered a weak base.